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ABSTRACT

The performance of the Hurricane Weather Research and Forecasting (HWRF) Model Rapid

Intensification Analog Ensemble (RI-AnEn) is evaluated for real-time forecasts made during the National

Oceanic and Atmospheric Administration (NOAA)’s 2018 Hurricane Forecast Improvement Program

(HFIP) demonstration. Using a variety of assessment tools (Brier skill score, reliability diagrams, ROC

curves, ROC skill scores), RI-AnEn is shown to perform competitively compared to both the deterministic

HWRF and current operational probabilistic RI forecast aids. The assessment is extended to include

forecasts from the 2017 HFIP demonstration and shows that RI-AnEn is the only model with significant RI

forecast skill at all lead times in the Atlantic and eastern Pacific basins. Though RI-AnEn is overconfident

in its RI forecasts, it is generally well calibrated for all lead times. Furthermore, significance testing indi-

cates that for the 2017–18 Atlantic and eastern Pacific sample, RI-AnEn is more skillful than HWRF at all

lead times and better than most of the other probabilistic guidance at 48 and 72 h. ROC curves reveal that

RI-AnEn offers a good combination of sensitivity and specificity, performing comparably to SHIPS-RII at

all lead times in both basins. With respect to specific high-impact cases from the 2018 Atlantic season,

performance of RI-AnEn ranges from excellent (Hurricane Michael) to poor (Hurricane Florence). The

multiyear assessment and results for two high-impact case studies from 2018 indicate that, while promising,

RI-AnEn requires further work to refine its performance as well as to accurately situate its effectiveness

relative to other RI forecasts aids.

1. Introduction

Operational forecasts of tropical cyclone (TC) track

and intensity have improved significantly over the past

decade as guidance available to forecasters has in-

creased both in sophistication and reliability (DeMaria

et al. 2014; Simon et al. 2018). Nevertheless, significant

challenges remain. Foremost among these is rapid in-

tensification (RI), or, more broadly, rapid intensity

change (RIC). Progress forecastingRIChas been grudging

indeed (e.g., Gall et al. 2013) and, given the potential

logistical difficulties produced by a TC intensifying

(or weakening) rapidly in the period immediately pre-

ceding landfall, the National Hurricane Center (NHC)

has made improving the prediction of RIC one of its

highest priorities. Likewise, the National Oceanic and

AtmosphericAdministration (NOAA)HurricaneForecast

Improvement Program (HFIP) has identified RIC as

one of its primary research foci.

While progress in RIC prediction has been slow, there

has been significant investment in TC-related numerical

weather prediction (NWP) in recent decades. High-

performance computing systems increasingly permit

operational NWP models in both deterministic and en-

semble settings to better resolve near-convective-scale
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have also been made in parameterization of the TC

planetary boundary layer and microphysics (Wang et al.

2018; Mehra et al. 2018). Finally, data assimilation

continues to advance and is resulting in better model

initialization. All of these areas of improvement in NWP

have yielded positive results in intensity prediction

(DeMaria et al. 2014; Liu et al. 2018).

While ongoing improvements in NWP models will

likely continue to provide incremental improvements in

track and intensity forecasts, the potential for NWP

models alone to improve RIC forecasts is by no means

certain. First, intensity predictability studies with dy-

namical models show that multiscale internal TC dy-

namics cause NWP intensity forecast error saturation to

occur within a few days, and even more quickly in cases

of higher rates of intensification (Judt and Chen 2016).

In the absence of external forcing, the intrinsic predict-

ability of the TC azimuthal wind is limited to about three

days (Hakim 2013), and environmental factors such as

vertical wind shear, particularly in cases of moderate

shear, can reduce predictability considerably (e.g., Zhang

and Tao 2013; Finocchio and Majumdar 2017). These

predictability studies imply there is an intrinsic limit of

intensity and RI predictability in NWP models. Second,

given that interaction of the mesoscale convective and

synoptic regimes has been demonstrated to impact at-

mospheric predictability (e.g., Boer 1994; Zhang et al.

2007; Judt 2018), regime-dependent systematic errors will

likely continue to exist as long as there are imperfections

in NWP models. For the latter challenge especially, sta-

tistical postprocessing methods for NWP form an at-

tractive set of complementary forecast aids.

Postprocessing techniques developed usingNWPmodel

forecast output have demonstrated success in the realm of

TC intensity prediction. One successful approach is a

consensus derived from the intensity predictions of multi-

plemodels (e.g., Sampson et al. 2008; Goerss and Sampson

2014; Krishnamurti et al. 1999; Williford et al. 2003; Simon

et al. 2018; Ghosh andKrishnamurti 2018), with optimized

multimodel ensembles producing some of the best inten-

sity forecasts. Statistical and probabilistic techniques for

intensity and RI prediction have also been derived using

global model analyses (e.g., DeMaria et al. 2005; DeMaria

2009; Kaplan et al. 2015) and are important stalwarts in

operational forecast centers since they have been com-

petitive with NWP predictions. In real-time forecast set-

tings, however, these empirical models typically use global

NWP model forecast fields for their time-varying in-

put predictors instead of predictors representing only the

initial analysis fields; in this way, they are hybrid NWP–

postprocessing techniques. More recently, logistic regres-

sion (Onderlinde and DeMaria 2018) and feed forward

neural network (Cloud et al. 2019) approaches have been

applied to high-resolution model output with promising

results in probabilistic RI prediction.

Another NWP postprocessing framework has emerged

in the atmospheric sciences is based on the identification

of analogs in historical NWP forecasts that, through

consideration of the corresponding verifying observa-

tions, help quantify analog-dependent errors. In particu-

lar, the analog ensemble (AnEn) of Delle Monache et al.

(2013) is a technique that provides a prediction of some

variable of interest (e.g., 2-m temperature, 10-m wind

speed) from a single deterministic NWP forecast by

identifying a set number of closest matching analogs

from the same NWP model’s historical forecasts. The

verifying observations that accompany these historical

forecast analogs are used to create an ensemble pre-

diction for the chosen variable of interest. The utility of

the AnEn as a postprocessing tool for the Hurricane

Weather Research and Forecasting (HWRF) Model

has been demonstrated recently for TC intensity pre-

diction in Alessandrini et al. (2018), who used a variety

of environmental and inner-core predictors that were

derived from HWRF reforecast data to construct an

AnEn for intensity prediction. This implementation of

the AnEn was competitive with, or superior to, the

forecast skill of the baseline HWRF and also provided

useful uncertainty information. In fact, the ensemble

displayed excellent dispersion properties in that the

model spread matched well with the root-mean-square

error of the intensity prediction at all lead times. In this

study, we build upon the promising results of Alessandrini

et al. (2018) for TC intensity prediction by deriving an

AnEn for intensity change with specific application to RI.

Furthermore, we show the real-time performance of this

intensity change-basedAnEn for TCs in the 2018Atlantic

and eastern Pacific hurricane seasons as well as for ex-

tended samples with forecasts made during the 2017

Atlantic and eastern Pacific seasons.

The remainder of the manuscript is organized as fol-

lows: a description of the methodology and analytical

tools employed is presented in section 2; results from

two cases chosen from the 2018 Atlantic season are

presented in section 3; results for all HFIP real-time

demo forecast cases from the 2017 and 2018Atlantic and

eastern Pacific seasons are presented in section 4; and, a

discussion and conclusions are given in section 5.

2. Methodology

a. The analog ensemble

In contrast to other postprocessing methods currently

used to generate objective forecast guidance, the AnEn

technique uses a single operational forecast to generate
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an ensemble of observed values corresponding to a

forecast predictand (e.g., the change in maximum sus-

tained wind speed DVmax for a given forecast lead time).

This task is accomplished by exploiting an extant set of

historical NWP model forecasts (e.g., the 2018 HWRF

preimplementation test set), which can be searched for

forecasts that are close matches for the operational

forecast. Briefly, a set ofmmatches (analogs) is selected

from the historical forecast set by minimizing the fol-

lowing Euclidean norm with respect to a set of Ny

predictors:
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where Ft is a current HWRF forecast valid at the lead

time t, At is the corresponding prospective analog valid

at the same forecast lead time, wi are the predictor

weights, sfi is the standard deviation of the time series of

past forecasts of a given predictor at the same forecast

lead time, and ~t is an integer equal to the half-width of

the lead time window over which the norm is computed

(~t5 12, 24, and 36h for forecast lead times of 24, 48, and

72h, respectively). The m historical forecasts thus rep-

resent the m closest matches to the operational forecast

with respect to the predictors chosen. Once the analog

forecasts are determined, the AnEn itself is simply the

set of m observations corresponding to each analog

forecast. Since the AnEn consists of observed (not

modeled) values, it represents a naturally downscaled

and well-calibrated ensemble at essentially zero cost.

More complete descriptions of the AnEn method and

its adaptation to the TC intensity prediction problem

can be found in Delle Monache et al. (2013) and

Alessandrini et al. (2018), respectively.

b. The HWRF Rapid Intensification Analog
Ensemble (RI-AnEn)

The AnEn method described above is adapted to the

prediction of intensity change DVmax at three forecast

lead times (t5 24, 48, and 72h) by developing optimized

predictand–predictor relationships for each lead time t.

The probability of RI at forecast lead time t is then

calculated from the analog ensemble according to

p(RI
t
)5

N(DV
max

$ DV
thresh

)

m
, (2)

where m is the size of the ensemble and N(DVmax $

DVthresh) represents the number of analog ensemble

members for which forecast DVmax meets or exceeds

the RI threshold DVthresh, where the three thresholds

considered in this study define the 95th percentile of

intensity change for a given time period (e.g., Kaplan

et al. 2015) and are 30kt (1 kt ’ 0.51ms21) per 24-h

period, 55 kt per 48-h period, and 65kt per 72-h period.

For the 2018 HFIP demonstration, the ensemble size is

m 5 20, and the model is trained with 1146 and 1372

Atlantic and eastern Pacific reforecasts (from the years

2015–17), respectively, from theHWRFpreimplementation

test (i.e., H218). An objective forward feature selection

method described in Alessandrini et al. (2018) is em-

ployed here to find a small set of predictors from a large

set of kinematic and thermodynamic predictors derived

from the HWRF forecast fields. The optimal set of

predictors and their weights in the analog search metric

are chosen such that the mean absolute error over an

independent portion of the training period is minimized.

The set of optimal predictors that emerged from the

training process and which are used in the 2018 HFIP

demonstration is given in Table 1. Additionally, to ad-

dress limitations imposed by the rather small sample size

resulting from a single season of forecasts, we also in-

clude results from the 2017 HFIP real-time demonstra-

tion. This version of the RI-AnEn was trained on the

2017 HWRF preimplementation test set (H217) and

included 858 and 1630 Atlantic and eastern Pacific re-

forecasts (from the years 2014–16), respectively. The set

of optimal predictors used in the 2017 RI-AnEn is given

in Table 2. The leading predictor at all lead times for

both the 2017 and 2018 iterations of RI-AnEn is the

HWRF DVmax (i.e., the predicted intensity change for a

particular forecast lead time as computed from the

HWRF deterministic model output). Other predictors

are derived from full 3D HWRF Model output and in-

clude shear, relative humidity, inertial stability, and

vertical motion. A full investigation of why some pre-

dictors are selected for a given lead time (andwhy others

are not) is beyond the scope of this paper. Each of the

predictors does possess a recognized phenomenological

relationship to TC intensity change, however, and the au-

thors hypothesize that the variability in predictor selection

from cycle to cycle is due to a combination of statistical

(i.e., sampling-related) and process-related reasons.

c. Test and verification datasets

For verification purposes, the HURDAT database,

available from the NHC (https://www.nhc.noaa.gov/data/

#hurdat), is used to determine the timing of RI events.

HURDAT contains the final best track datasets for both

2017 and 2018. For comparison purposes, the perfor-

mance of two operational statistical models, SHIPS-RII

and the SHIPS-based RI consensus (SHIPSCON)

(Kaplan et al. 2015) is evaluated from SHIPS text files

also available from NHC (https://ftp.nhc.noaa.gov/atcf/

stext/). SHIPS-RII is a linear-discriminate analysis-based
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model that uses a mixture of global model and satellite-

derived predictors, while SHIPSCON incorporates other

SHIPS models (including those using logistic regression

and Bayesian techniques) into a consensus forecast. In

contrast to the SHIPS models, which employ as many as

10 predictors, the RI-AnEn is somewhat more parsimo-

nious (several predictors per lead time) and also incor-

porates predictors derived from the TC inner core using

HWRF Model output.

In addition to the RI-AnEn and SHIPS models, the

deterministic (i.e., operational) HWRF Model is also

considered. The RI-AnEn is built upon a founda-

tion of HWRF historical forecasts, and it is neces-

sary to compare RI-AnEn performance with HWRF

performance to adjudge the value-added benefit of

RI-AnEn.

d. Assessment tools

Forecasts obtained from RI-AnEn, SHIPS-RII,

SHIPSCON, and HWRF are evaluated using several

verification tools. The Brier skill score (BSS; Wilks

2006) measures the degree of improvement achieved

by a set of probabilistic forecasts relative to a climato-

logical baseline:

BSS5 12
BS

forecast

BS
climatology

, (3)

where BSforecast and BSclimatology are the Brier scores

(Brier 1950) obtained for the set of forecasts and for

climatology, respectively. A BSS value greater than

0 indicates that the forecasts are skillful (with 1

being a perfect BSS value), whereas a negative value

indicates that the simple climatological forecast is

superior. The climatological RI probabilities for the

Atlantic and eastern Pacific basins are computed

from the HURDAT dataset over the period 1987–

2017 in accord with the criteria set forth in Kaplan

and DeMaria (2003). These are given in Table 3 and

are in good agreement with the climatological RI

probabilities computed from the SHIPS develop-

mental dataset and that appear in the SHIPS text files.

In addition to forecast skill, we verify the calibra-

tion of the probabilistic models (RI-AnEn, SHIPS-

RII, SHIPSCON) by constructing reliability diagrams

(Hartmann et al. 2002). Forecasts are gathered into four

bins ( p# 0.01, 0.01, p# 0.3, 0.3, p# 0.6, p. 0.6) and

the number of verifying RI events corresponding to

those forecasts is then divided by the total number of

forecasts. Ideally, the observed frequency of RI would

match the predicted probability when averaged over

the entire sample. Ordered pairs lying above the di-

agonal of a reliability diagram indicate the observed

frequency exceeds the model prediction (i.e., under-

confidence of the underlying forecast model), whereas

values lying below the diagonal indicate overconfidence

of the underlying model. Given the sensitivity of reli-

ability to sample size, this assessment will only be per-

formed with the sample composed of forecasts obtained

for the 2017 and 2018 HFIP real-time demonstrations

TABLE 1. Optimal predictors chosen for the 2018 HWRF RI-AnEn.

Forecast lead time Atlantic basin Eastern Pacific basin

24 h DVmax (HWRF), 500–250-hPa relative humidity,

inner-core sensible heat flux (r 5 0–50 km),

850–200-hPa vertical shear magnitude

DVmax (HWRF), inner-core sensible heat flux

(r 5 0–50 km), 500–250-hPa relative humidity,

850–200-hPa vertical shear magnitude

48 h DVmax (HWRF), maximum potential intensity,

inertial stability (r 5 0–100 km), 500–250-hPa

relative humidity

DVmax (HWRF), maximum potential intensity,

850–200-hPa vertical shear magnitude

72 h DVmax (HWRF), inertial stability/vertical motion

coupling symmetry (r 5 100–250 km)

DVmax (HWRF), MPI, inner-core average vertical

motion (r 5 0–50 km), inertial stability

(r 5 0–100 km), HWRF Vmax (t 5 0)

TABLE 2. Optimal predictors chosen for the 2017 HWRF RI-AnEn.

Forecast lead time Atlantic basin Eastern Pacific basin

24 h DVmax (HWRF), symmetry of low-level inflow

(r 5 0–100 km)

DVmax (HWRF), minimum sea level pressure

48 h DVmax (HWRF), convective available potential

energy (r 5 200–600 km), latent heat flux

(r 5 0–50 km)

DVmax (HWRF), total condensate (r5 0–100 km)

72 h DVmax (HWRF), storm translation speed, latent

heat flux (r 5 0–50 km)

DVmax (HWRF), inertial stability (r5 0–100 km)
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for both the Atlantic and eastern Pacific basins (see

section 2e below).

Receiver operating characteristic (ROC) (Wilks 2006)

curves are used to further evaluate the performance of

the probabilistic models with respect to resolution

(i.e., their ability to discriminate between events and

nonevents). The ROC provides a compact represen-

tation of model performance at various probability

thresholds and can prove useful in configuring such

models for use in operations when a trade-off between

model sensitivity and specificity (i.e., hit rate and false

alarm rate) must be considered. To provide a stan-

dardized representation of the ROC results, we also

compute ROC skill scores (ROCSS). The ROCSS

(Mason and Graham 1999) is related directly to the

area under the ROC curve (AUC):

ROCSS5 2 (AUC2 0:5). (4)

The ROCSS is somewhat easier to interpret than the

ROC curve since a value equal to 1 implies perfect

forecasts and a ROCSS lower than 0 indicates perfor-

mance worse than that obtainable by random draws

from a uniform distribution [i.e., U(0,1)]. As with reli-

ability, the ROC and ROCSS are computed only for

the larger 2017–18 Atlantic and eastern Pacific sample.

Finally, to assess the significance of the skill scores

discussed above, standard bootstrap confidence inter-

vals (Davison and Hinkley 1997) are constructed for

pairwise BSS differences between the RI-AnEn and the

other models using 1000 bootstrap replicates. A signifi-

cance level of a5 0.05 is used, meaning that 95% of the

replicates are contained within the displayed intervals.

This permits testing of the hypothesis that the skill score

computed from one of the model forecasts at a given

lead time is significantly better than the same metric

computed from one of the other models. For example, if

the skill score of the RI-AnEn is greater than that of a

competing model and the confidence intervals are en-

tirely composed of positive values, then the RI-AnEn

skill score is judged to be significantly better (at the 95%

level). We also evaluate the overall skill of each of the

model’s RI forecasts using the Diebold–Mariano (DM)

(Diebold and Mariano 1995) test, which is another

method that allows for head-to-head comparisons of

alternative forecasts. Originally developed to compare

time series forecasts arising in economics applications,

the DM test has recently been applied successfully to

forecast output from NWP models (Sperati et al. 2015).

The DM’s null hypothesis [that the loss difference be-

tween two sets of model forecasts is statistically indis-

tinguishable, i.e., distributed as N(0,1)] is tested for all

model–model pairs.

TABLE 3. Baseline climatological RI probabilities (%) for the

Atlantic and eastern Pacific basins computed for the years 1987–

2017. The observed frequency of RI for the samples analyzed in the

manuscript is shown in parentheses (2018) and brackets (2017–18).

Lead

time/DVmax Atlantic Eastern Pacific

Atlantic

1
eastern Pacific

24 h/30 kt 6.6 (6.1) [11.1] 8.3 (11.7) [12.1] 7.4 [11.6]

48 h/55 kt 4.6 (6.3) [7.7] 6.4 (6.8) [7.6] 5.6 [7.6]

72 h/65 kt 5.1 (4.5) [3.8] 5.2 (7.0) [7.2] 5.1 [5.4]

FIG. 1. Track of Hurricane Florence (2018) from its initial designation as a tropical de-

pression on 31 Aug until its extratropical transition over the inland southeastern United States

on 17 Sep. Periods during which Florence intensified at rates satisfying the 24-, 48-, and 72-h

thresholds for rapid intensification are indicated in red, green, and blue, respectively.

Maximum intensity (130 kt) was achieved at 1800 UTC 11 Sep.
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e. Forecast period and case selection

RI-AnEn forecasts were generated in real time on the

NOAA Jet supercomputer over the period 22 July–

31 October 2018 for each available operational HWRF

forecast. As currently configured, RI-AnEn is intended

to demonstrate performance benefits relative to the

deterministic HWRF and other RI guidance available at

the given synoptic time. Full operationalization (to in-

clude development of an interpolated version of the

AnEn, which would render it an ‘‘early’’ guidance

product) has not been undertaken, but could readily be

accomplished.

To ensure that the verification adheres to the defi-

nition of rapidly intensifying TCs set forth in Kaplan

and DeMaria (2003), only those TCs that satisfy the

following two criteria are retained for evaluation: 1)

tropical depression strength or greater, and 2) over

water for the duration of the forecast period of

interest.

3. Case studies from the 2018 Atlantic season

a. Hurricane Florence (AL06)

Florence was a tropical cyclone typical of the ‘‘Cape

Verde’’ type, developing from an African easterly wave

in the far eastern tropical Atlantic and attaining hurri-

cane intensity east of the Lesser Antilles (Fig. 1). Two

distinct RI periods were observed with Florence. The

first RI period, which began on 4 September, occurred

despite large-scale environmental conditions (15–20 kt

of southwesterly vertical wind shear, midlevel relative

humidity , 50%, sea surface temperature , 278C) that
were not conducive to significant strengthening (Stewart

and Berg 2019). Forecasts for Florence (Fig. 2) reveal

that the first RI is not well anticipated by HWRF or the

HWRF RI-AnEn. RI-AnEn probabilities are near zero

for nearly all 24-, 48-, and 72-h forecasts made during

this period, and HWRF forecasts advertise only a mix-

ture of slight intensification or weakening (610–15kt) at

FIG. 2. Time series of intensity change DVmax for Hurricane Florence (2018) for forecast

cycles valid at (a) 24, (b) 48, and (c) 72 h. Observed values are depicted by the heavy black line.

The correspondingDVmax from the deterministic HWRF forecast is given by the cyan line. RI

forecasts from the probabilistic models are superimposed (red, orange, and green indicating

the RI-AnEn, SHIPS-RII, and SHIPSCON models, respectively) with corresponding scale

on the right axis. Forecast cycles for which RI occurred are indicated by DVmax values that lie

above the black dotted line. Labels on the abscissa indicate the initialization date for the

forecasts.
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each lead time. The large HWRF forecast errors are

apparently due to the adverse impact of marginal to

unfavorable environmental conditions, namely strong

vertical wind shear and low midlevel relative humidity

diagnosed in the model output fields. Given that the RI-

AnEn uses these environmental predictors for its 24-h

forecasts (i.e., relies upon the observed relationships

between 24-h intensity change and HWRF vertical wind

shear/midlevel relative humidity), it is understandable

that RI-AnEn is unable to improve upon the HWRF

forecasts for this RI event. We can only speculate the

reasoning for this forecast difficulty, but it is possible the

HWRF misdiagnosed the actual shear felt by Florence

(e.g., Ryglicki et al. 2019), or similarly, incorrectly

handled the water vapor content near the vortex core.

There could be other internal dynamics that are not well

captured by theHWRF aswell. If, on the other hand, the

HWRF is faithfully representing the TC environment,

then there is also the possibility that a larger HWRF

reforecast dataset may be necessary to provide a more

adequate sampling of the TC RI climatology of which

this particular event was an outlying sample. In contrast

to the HWRF and RI-AnEn performance, the SHIPS-

basedmodels do indicate enhanced probabilities (;20%,

or about three times the climatologicalmean) for the 24-h

RI event, but these are part of a 4-day period of near-

constant values and therefore do not resolve the timing of

the event well. The 48- and 72-h forecasts of this event

are exceedingly poor for all models, underscoring the

peculiarity of the event and highlighting the need to

better resolve the internal and external processes that

control RI.

The second RI period (for forecasts initiated on 9, 8,

and 7 September 2018 for lead times of 24, 48, and 72h)

occurred in a more favorable synoptic environment

(vertical shear of 5–10 kt) and is consequently better

predicted. All the models indicate elevated probabilities

for 24 and 48h, though these generally lag the onset of

the event (i.e., they take a few cycles to ‘‘catch up’’ and

therefore the maximum probabilities occur several cy-

cles after the RI event ends). The exception is the

SHIPS-RII, which shows its peak 48-h probability at

1800 UTC 8 September (a verifying 48-h RI event). At

72 h, the RI-AnEn alone among the models shows

elevated probabilities during the broad period of in-

tensification, but once more the peak forecast proba-

bility (45% for the forecast initialized at 1800 UTC

8 September) verifies at a lead time (1800 UTC

11 September) that is at the tail end of the RI period.

b. Hurricane Michael (AL14)

Unlike Florence, Michael developed much closer to

the continental United States and began intensifying

rapidly almost immediately. Figure 3 shows the track of

Michael from its origins in the western Caribbean Sea to

its ultimate landfall as a category 5 hurricane near

Mexico Beach, Florida, only three days later. Perhaps

what is most remarkable is the nearly continuous RI that

occurred at all lead times for the duration of Michael’s

overwater traverse.With the exception of an 18-h period

(0600 UTC 8 September–0000 UTC 9 September) dur-

ing which the criterion for 24-h RI was not satisfied, the

hurricane intensified rapidly with respect to RI thresh-

olds at 24, 48, and 72h. Like Florence during its first RI

period, the large-scale environment in which Michael

was embedded appeared less than ideal, with moderate-

to-strong southerly and south-southwesterly vertical

wind shear. There is some indication that favorable

interaction with an upper-level trough over the Gulf of

Mexico may have compensated for what otherwise ap-

peared to be marginal conditions. In any case, the evo-

lution ofMichael was relatively well captured bymost of

the guidance, though there was a persistent low bias in

intensity forecasts (Beven et al. 2019).

FIG. 3. Track of Hurricane Michael (2018) from its initial des-

ignation as a tropical depression on 7 Oct until its extratropical

transition over the inland southeastern United States on 11 Oct.

Periods during which Michael intensified at rates satisfying the 24-,

48-, and 72-h thresholds for rapid intensification are indicated in

red, green, and blue, respectively. Maximum intensity (140 kt) was

achieved at the time of landfall at 1730 UTC 10 Oct.
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Unlike the forecast failures that occurred during

Florence’s first RI, both the deterministic HWRF and

the probabilistic models perform rather well forMichael

(Fig. 4). For the 24-h lead time, the HWRF forecasts are

excellent, matching the observed intensity change al-

most exactly for forecasts initialized from 1200 UTC

7 September to 0000 UTC 9 September. The RI-AnEn

likewise shows probabilities in the 60%–70% range

during this same period. SHIPS-RII and SHIPSCON

also show elevated probabilities, but they are overall

much lower (in the 20%–50% range). Each of the

models is somewhat slow in recognizing the onset of

RI (forecasts at 1200 UTC 7 September gave RI

probabilities, 40%) and is also hasty in forecasting its

end, both of which are likely related to the evolving

upper-level flow over the Gulf of Mexico. Though ulti-

mately favorable for RI, the precise nature of Michael’s

interaction with the upper-level trough took a while for

the models to resolve; likewise, small errors in the pre-

diction of the steering flow led to the HWRF/Global

Forecast System (GFS) forecasting landfall on the

Florida Panhandle at a time earlier than what actually

verified.

The 48-h forecasts are distinguished by a greater

disparity between the RI-AnEn and SHIPS models.

The former has greatly elevated probabilities (50%–

80%) over most of the RI period, while the latter has

only modestly elevated probabilities (,20%). HWRF

again performs quite well, although as was the case

with the 24-h lead time, poor timing of landfall results

in a shorter period of RI than ultimately occurred. At

72 h, only the HWRF and RI-AnEn capture the rapid

intensification signal, though, as is the case at 24 and

48 h, the signal is lost for forecasts verifying some 12 h

prior to landfall.

c. Ensemble DVmax forecasts for Florence and
Michael

Since RI-AnEn produces ensemble forecasts ofDVmax,

it is useful to examine these forecast results for Florence

and Michael as a supplement to the probabilistic RI re-

sults described above. To do so, we first compute binned

spread–skill statistics for all 24-, 48-, and 72-h RI-AnEn

DVmax ensemble forecasts made as part of the 2017 and

2018 HFIP real-time demonstrations (Fig. 5). For this

two-year forecast set, RI-AnEn tends to have poor

spread–skill characteristics for ensemble spreads less

than 15kt (in these cases, RI-AnEn tends to be under-

dispersive). RI-AnEn remains slightly underdispersive

for those cases that are intrinsically more dispersive (i.e.,

FIG. 4. As in Fig. 2, but for Hurricane Michael (2018).
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ensemble spreads . 15kt), though the degree of this

underdispersion is not significant at the 95% level as

indicated by the overlap of the associated confidence

intervals and the 1:1 line.

Ensemble DVmax forecasts for Florence (Fig. 6) show

that the spread of the RI-AnEn forecasted change in

intensity at the 24-, 48-, and 72-h lead times for the

first RI event is both small and insufficient to account

for the forecast error, consistent with the spread–skill

results discussed above. Indeed, for all lead times in

the first RI event, the spread of the RI-AnEn is con-

strained and unable to indicate any possibility of

RI, although the RI-AnEn does show some height-

ened probabilities of greater intensification early on

1 September 2018 prior to the RI of Florence. In the

second period of RI, while the median RI-AnEn

prediction for the intensity change is too low, the

spread indicates some analogs suggested RI would

occur when it did. It is notable that the ensemble

spread during the second RI period is considerably

larger than during the first. This holds true for the 24-,

48-, and 72-h forecasts.

Turning now to Michael, the HWRF and RI-AnEn

show premature weakening of Michael leading into

10 October 2018 at all forecast lead times (Fig. 7), due to

the fact that the simulated HWRF landfall occurred

sooner than was observed. Otherwise, consistent with

the probabilistic forecast results discussed in section 3b,

the RI-AnEn performs well, particularly for the 24- and

48-h lead times. The RI-AnEn spread straddles the best

track data at most forecast times, and while the median

RI-AnEn has some RI false alarms at 24 h (i.e., 24-h

forecasts from 0600 UTC 8 October to 0000 UTC

9October), the best track data show a storm intensifying

at a rate almost great enough to qualify for RI. Overall,

examination of forecast output from the DVmax ensem-

ble spread perspective sheds light on nuances of the

forecast not discernible from the probabilistic RI fore-

cast vantage point. In this respect, RI-AnEn offers some

of the same benefits provided by a full-physics dynami-

cal ensemble.

4. Results from the 2017 and 2018 Atlantic and
eastern Pacific seasons

Performance of the RI-AnEn relative to the deter-

ministic HWRF and the SHIPS statistical models is first

assessed using the BSS as described in section 2. Though

not strictly defined for deterministic forecasts, the op-

erational HWRF results are adapted for inclusion in the

BSS comparisons by defining for each forecast a prob-

ability of 1 or 0 in the case that RI is or is not forecast,

respectively.

For the Atlantic basin (Fig. 8a), at each lead time, the

RI-AnEn is the most skillful of the models considered.

The degree of separation is most pronounced at 48 h,

where the RI-AnEn BSS is just under 0.5 (i.e., a 50%

improvement over a forecast using the climatological

probability of RI) and none of the other models pro-

vides more than an 8% improvement at any lead time.

However, 48 h is the only lead time at which the RI-

AnEn is significantly better than any of the other models

at the 95th percentile level. This is confirmed by both

bootstrap confidence intervals for the pairwise differ-

ences in BSS between RI-AnEn and the other models

as well as by the DM test. Model performance was

generally better in the eastern Pacific basin in 2018

(Fig. 8b). The SHIPS-RII, SHIPSCON, and RI-AnEn

models are all skillful at 24 h. At 48 h, the SHIPS-RII,

SHIPSCON, and RI-AnEn models continue to be

skillful, while only the RI-AnEnmodel remains skillful

at 72 h, and significantly more skillful than the other

models analyzed. The deterministic HWRF model is

not skillful at any lead time in the eastern Pacific. At no

lead times are any of the models significantly better

than the RI-AnEn.

FIG. 5. Binned RI-AnEn spread–skill plot computed for the

combined Atlantic and eastern Pacific basin forecast set for the

2017 and 2018 HFIP real-time demonstrations. Ensemble

spread was computed for 24-, 48-, and 72-h ensemble forecasts

of DVmax and sorted into 13 bins, each of which contains 172

samples. The ensemble-mean RMSE (i.e., the RMSE computed

using the ensemble mean DVmax as the estimator) correspond-

ing to each set of binned samples was then computed and is

plotted on the ordinate. The 95% bootstrap confidence intervals

(computed using 1000 replicates) for the RMSE are indicated by

the gray shading.
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As mentioned previously, the sample sizes in both the

Atlantic and eastern Pacific are relatively small. To ad-

dress this shortcoming, we augment the 2018 forecast set

in each basin with corresponding forecast results from

the 2017 HFIP real-time demonstration. The results for

the Atlantic (Fig. 9a) are similar to those for the 2018

season (Fig. 8a) with the notable exception of the im-

proved skill of the two SHIPS-based models at all lead

times. The RI-AnEn is significantly more skillful than

the HWRF at 24h and significantly more skillful than all

models at 48 h. The deterministic HWRF again fails to

exhibit skill at any lead time. In the eastern Pacific

(Fig. 9b), the results are fairly similar to those for 2018

alone (Fig. 8b), due primarily to the small sample size of

the 2017 HFIP real-time forecasts in that basin. To

achieve the best possible assessment of performance, the

2017–18 forecasts for the Atlantic and eastern Pacific

basins are combined into a single set with 907, 735, and

594 forecasts valid at 24, 48,and 72 h, respectively. The

BSSs computed for this sample (Fig. 10) show that the

probabilistic models are tightly packed at 24 h, each

exhibiting significant skill in excess of 20%. The RI-

AnEn, however, is the only model we analyzed to

exhibit significant skill at all lead times for the combined

2017–18 Atlantic–eastern Pacific sample. In fact, the RI-

AnEn performs significantly better than all models at

72-h lead times and significantly better than the HWRF

and SHIPSCON at the 48-h lead time in terms of

both bootstrap confidence intervals and the Diebold–

Mariano test. In both Figs. 9 and 10, none of the models

are more skillful than the RI-AnEn at any lead time in a

statistically significant sense.

An important component of the Brier score is reli-

ability (the degree to which forecast probability agrees

with observed frequency), and results for the 2017–18

Atlantic–eastern Pacific sample are summarized in

Fig. 11. At 24 h, each of the models exhibits good reli-

ability for forecast probabilities less than 0.6. Beyond

that threshold, the RI-AnEn’s tendency to be too ag-

gressive (i.e., overconfident) becomes more pronounced,

while the SHIPSCON model’s underconfidence is like-

wise amplified. Of the three models considered here,

SHIPS-RII is the most reliable at 24h. At 48h, SHIPS-

RII and RI-AnEn both perform well, though for the

majority of forecasts (p# 0.6) the SHIPSmodels tend to

be underconfident while the RI-AnEn is once again

FIG. 6. The 24-, 48-, and 72-h DVmax predicted by HWRF and the RI-AnEn along with the

accompanying verifying observations of intensity change for Hurricane Florence (2018). The

RI threshold for each lead time is indicated by the black dashed line and the 5th–95th and

25th–75th percentiles of the RI-AnEn intensity change forecasts are indicated in light and dark

blue shading, respectively.
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overconfident. The impact of undersampling begins to

become evident for the 72-h forecasts, as there simply

are not enough SHIPS-RII or SHIPSCON forecasts at

the higher probability thresholds to generate useful re-

liability information. The RI-AnEn, while once again

tending to overstate the likelihood of RI, is relatively

reliable for forecast probabilities greater than 0.3.

Comparisons of model reliability are limited to a qual-

itative basis, as the sample sizes at the higher probability

thresholds are insufficient to generate representative

uncertainty statistics.

Receiver operating characteristic (ROC) curves are

plotted for the combined 2017–18 Atlantic–eastern

Pacific sample in Fig. 12. Optimal performance of a

probabilistic model from this perspective is indicated

by a curve which cleaves closely to the left (false alarm

rate5 0) and upper (hit rate5 1) axes. In other words, it

is advantageous to maximize hit rate and minimize false

alarm rate. Doing so results in a larger area under the

ROC curve (AUC), themaximumof which can be unity.

For the 24-h forecasts the SHIPS models clearly do a

much better job than RI-AnEn of distinguishing be-

tweenRI and non-RI events as evidenced by their larger

AUC values (;0.88 for the former versus 0.83 for the

latter). This pattern reverses at 48 h, where theRI-AnEn

has a slightly larger AUC than either of the SHIPS

models, and this remains true at 72 h, where RI-AnEn

has an AUC more than 10% greater than SHIPS-RII.

SHIPSCON, despite its degraded performance in 72-h

forecast reliability relative to RI-AnEn, has an AUC

nearly identical to RI-AnEn for the same lead time,

which illustrates the importance of using a variety of

metrics to evaluate forecasts.

To conclude the bulk assessment of model perfor-

mance, the ROC curves considered in Fig. 12 are

transformed to a standardized skill score using Eq. (4).

The resulting ROCSS (Fig. 13) show that at 24 h, the

SHIPS models are more skillful than RI-AnEn in dis-

tinguishing RI events from non-RI events. At 48 and

72 h, the RI-AnEn is more skillful than either of the

SHIPS models.

5. Discussion and conclusions

The HWRF rapid intensification analog ensemble

(RI-AnEn) is evaluated for real-time forecasts made

during the 2018 HFIP real-time demonstration, and

these results are further supplemented with results from

the 2017 HFIP real-time demonstration to produce a

sample which ensures more robust statistics.

Results obtained for two particular, high-impact cases

(Hurricanes Florence andMichael from the 2018Atlantic

season) highlight the strengths and weaknesses of both

RI-AnEnand probabilistic guidance in general. Florence,

FIG. 7. As in Fig. 6, but for Hurricane Michael (2018).
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which underwent RI under marginal (at best) environ-

mental conditions, was poorly forecast, eluding every

available forecast aid at the NHC’s disposal. RI-AnEn

was unable to provide useful guidance in this case,

but performed comparably to other forecast aids for

Florence’s second RI event. Michael, on the other hand,

was very well forecast by RI-AnEn. At 24- and 48-h lead

times, the RI-AnEn forecast significantly elevated RI

probabilities (.50%) for the majority of forecast cycles

inwhichRIwas ultimately confirmed. Furthermore, when

the dispersion of theDVmax is analyzed (Figs. 6 and 7), it is

shown that much of the same information contained in

a full dynamical ensemble is also available from the

RI-AnEn. Hence, while the RI probabilities themselves

provide rapid access to the predicted likelihood of RI,

examination of the median DVmax and ensemble spread

provides an estimate of anticipated intensity change as

well as its associated uncertainty. Given the documented

spread–skill relationship of RI-AnEn over the entire,

augmented sample, ensemble DVmax forecasts with

spreads greater than 15 kt are anticipated to have bet-

ter dispersion characteristics.

Using a suite of assessment tools (Brier skill scores,

reliability diagrams, Diebold–Mariano test, ROC curves,

ROC skill scores), the RI-AnEn is demonstrated to be

very competitive with current operational deterministic

and probabilistic RI forecast aids. From the Brier per-

spective, the RI-AnEn is the most skillful model at

each lead time for Atlantic basin forecasts in 2018 and

FIG. 8. BSSs for RI forecasts generated by the deterministic

HWRF, SHIPS-RII, SHIPSCON and RI-AnEn models during

the 2018 HFIP real-time demonstration. BSSs are shown for 24-,

48-, and 72-h lead times for the (a) Atlantic and (b) eastern

Pacific basins and include 95% bootstrap confidence intervals

(CIs) for pairwise RI-AnEn–HWRF, RI-AnEn–SHIPS-RII, and

RI-AnEn–SHIPSCON BSS differences computed using 1000

replicates. In those instances where the Diebold–Mariano test

indicates significance, the corresponding BSS CIs are shown in

bold. The total number of forecasts N and number of RI events

(Nri) are shown in black and magenta, respectively, across the

top of each panel.

FIG. 9. As in Fig. 8, but for combined forecasts from the 2017 and

2018 HFIP real-time demonstrations.
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demonstrates skill greater than 20% at each lead time

for the eastern Pacific. Note that a model can be more

skillful without the difference in skill necessarily being

significant. That being said, there are significant differ-

ences in skill as indicated by both DM tests and boot-

strap confidence intervals (both at the 95% significance

level) for pairwise BSS differences. In the Atlantic, RI-

AnEn is significantly better than all other guidance at

48 h for both the 2017 and 2018 seasons. In the eastern

Pacific, RI-AnEn is significantly more skillful at 72 h

for both seasons. DM tests and bootstrap confidence

intervals for the combined 2017–18 Atlantic and

eastern Pacific forecast sample show that the RI-

AnEn significantly outperforms the underlying de-

terministic HWRF at all lead times and is significantly

more skillful than the other probabilistic models at

72 h. Analysis of forecast reliability for this same

sample reveals that, though the RI-AnEn tends to

be overconfident in its RI forecasts, it is generally

well calibrated (i.e., reliable), though sparsely sampled

higher-probability events makes quantification of reli-

ability differences among the models difficult even for

the larger sample.

ROC curves reveal that the RI-AnEn offers excellent

resolution, namely, a combination of sensitivity (maxi-

mized for high hit rates) and specificity (maximized

for small false-positive rates), performing competitively

with respect to the SHIPS models in both basins. These

results are supported by ROC skill scores, which indi-

cate that at 48 and 72h, the RI-AnEn is a more skillful

model in terms of resolution. The ROCSS results are

not statistically significant and await a larger, multi-

year sample to more firmly establish the RI-AnEn’s

performance characteristics relative to other opera-

tional guidance. Nevertheless, the totality of evidence

(BSS, reliability, DM, ROC, and ROCSS) suggests

that RI-AnEn is a highly competitive model with

very attractive advantages for longer-term (48 and

72 h) RI forecasts in both the Atlantic and eastern

Pacific basins.

While the RI-AnEn performed well for both the

2018 and combined 2017–18 forecast samples, important

challenges remain. In regard to operational applica-

bility, the version of RI-AnEn evaluated here is de-

rived using the late version HWRF output, meaning

that a new version (using early HWRF output) would

need to be derived for operational use. While this

would likely lead to at least some changes in perfor-

mance, it is worth noting that a neural network pre-

diction tool Cloud et al. (2019) developed with the

same HWRF predictor dataset showed that the early

version of their model performed nearly as well as a

late version when applied to RI prediction. It is also

important to note that the relatively small size of the

HWRF retrospective training set (only several years of

forecasts) likely places an upper bound on current

levels of performance. Insufficient sampling of the

model climatology is highlighted by large forecast er-

rors related to ‘‘outlier’’ events such as Florence’s first

RI. For this reason, extending the training set in vari-

ous ways (including developing a lengthier reforecast

dataset or developing a multimodel RI-AnEn) and

incorporating more sophisticated machine learning

tools will be of utmost importance for future perfor-

mance, especially if cases such as 2018’s Hurricane

Florence are to be better forecast. Additional work

also remains regarding the relationship between RI-

AnEn performance and various aspects of the atmo-

spheric and oceanic environment. Identification of

biases with strong correlations to environmental con-

ditions would represent actionable information for

forecasters and future model developers alike.

It should be stressed that the RI-AnEn in particular,

and the AnEn in general, is not intended as a replace-

ment for any particular guidance product. Indeed, by its

very nature, the AnEn is an adjunct of the dynami-

cal model upon which it is built. This dependence serves

to illustrate an important point, namely that the AnEn

is a flexible tool that offers certain performance advan-

tages over the parent deterministic model (as demon-

strated here) at essentially zero runtime cost, meaning

that the AnEn can be extended to other dynamical

models (global as well as regional) with relative ease. As

global models steadily increase in resolution and so-

phistication in the coming years, it is reasonable to

expect that they will be relied upon for TC intensity

FIG. 10. As in Figs. 8 and 9, but for the combined Atlantic and

eastern Pacific basin forecast set for the 2017 and 2018 HFIP real-

time demonstrations.
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FIG. 11. Reliability diagrams for (a) 24-, (c) 48-, and (e) 72-h probabilistic RI forecasts made for the combined

Atlantic and eastern Pacific forecast set for the 2017 and 2018 HFIP real-time demonstrations. The corresponding

number of forecasts in each probability bin are shown for (b) 24, (d) 48, and (f) 72 h. The sample sizes (N and Nri) for

each forecast lead time are shown in the upper right of (a), (c), and (e). The solid diagonal black line indicates perfect

agreement between forecast probability and observed frequency. The horizontal dashed line depicts the baseline

climatological RI probability for the given lead time, in this case given by theweighted average of the climatologicalRI

probabilities in the Atlantic and Eastern Pacific as determined from HURDAT for the years 1987–2017. Plot points

lying between the diagonal and vertical dashed lines indicate that forecasts in that probability bin are skillful.
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forecasts with increasing frequency. As this transition

occurs, AnEn models can be developed which pro-

vide well-calibrated ensembles of intensity change,

thereby extending the value of the deterministic pre-

dictions and offering forecasters valuable insight into

the associated uncertainty. Finally, it is also worth

mentioning that AnEnmodels need not be restricted to

predictions of TC intensity (as in Alessandrini et al.

2018) or intensity change as explored in this study. The

AnEn can be extended to the prediction of TC track,

structure, precipitation, and most any other field or

parameter of importance in the TC prediction and

warning process.

Acknowledgments. The authors wish to acknowledge

the support of the National Oceanic and Atmospheric

Administration (NOAA) and the Hurricane Forecast

Improvement Program (HFIP) viaNOAAHFIPAward

NA16NWS4680027 and extensive use of the Jet super-

computer, as well as numerous fruitful discussions with

fellow HFIP participants. The authors also extend their

gratitude to John Kaplan as well as two anonymous re-

viewers for comments and insights that have substan-

tially improved the quality of the manuscript.

REFERENCES

Alessandrini, S., L. D. Monache, C. M. Rozoff, and W. E. Lewis,

2018: Probabilistic prediction of tropical cyclone intensity with

an analog ensemble. Mon. Wea. Rev., 146, 1723–1744, https://

doi.org/10.1175/MWR-D-17-0314.1.

Beven, J. L., II, R. Berg, and A. Hagen, 2019: National Hurricane

Center Tropical Cyclone Report: Hurricane Michael (7–11

October 2018). NOAA/NHC Tech. Rep. AL142018, NOAA/

National Hurricane Center, 86 pp., https://www.nhc.noaa.gov/

data/tcr/AL142018_Michael.pdf.

Biswas, M. K., and Coauthors, 2018: Hurricane Weather

Research and Forecasting (HWRF) Model: 2018 Scientific

Documentation. Accessed 15 January 2019, https://dtcenter.org/

HurrWRF/users/docs/index.php.

Boer, G. J., 1994: Predictability regimes in atmospheric flow.Mon.

Wea. Rev., 122, 2285–2295, https://doi.org/10.1175/1520-

0493(1994)122,2285:PRIAF.2.0.CO;2.

Brier, G. W., 1950: Verification of forecasts expressed in terms of

probability. Mon. Wea. Rev., 78, 1–3, https://doi.org/10.1175/

1520-0493(1950)078,0001:VOFEIT.2.0.CO;2.

Cloud, K. A., B. J. Reich, C. M. Rozoff, S. Alessandrini, W. E.

Lewis, and L. Delle Monache, 2019: A feed forward neural

network based on model output statistics for short-term hur-

ricane intensity prediction. Wea. Forecasting, 34, 985–997,

https://doi.org/10.1175/WAF-D-18-0173.1.

FIG. 12. ROC curves for the combined Atlantic and eastern Pacific forecast set for the 2017 and 2018 HFIP real-time demonstrations.

ROC curves are shown for probabilistic RI forecasts made for (a) 24, (b) 48, and (c) 72 h for the RI-AnEn (red), SHIPS-RII (orange), and

SHIPSCON (green) models. The area under the ROC curve (AUC) is shown for each model in the lower right of each panel with the

corresponding sample sizes shown in the extreme lower right. Hit and false alarm rates are plotted at probability thresholds ranging from 0

to 1 using increments of 0.05 for RI-AnEn and 0.01 for SHIPS-RII and SHIPSCON.

FIG. 13. ROCSS for the combined Atlantic and eastern Pacific

forecast set for the 2017 and 2018 HFIP real-time demonstrations

for the RI-AnEn (red), SHIPS-RII (orange), and SHIPSCON

(green)models. The 95% bootstrap confidence intervals are shown

for each lead time, and the corresponding sample sizes (N and Nri)

are indicated along the top of the panel.

JUNE 2020 LEW I S ET AL . 855

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:03 PM UTC

https://doi.org/10.1175/MWR-D-17-0314.1
https://doi.org/10.1175/MWR-D-17-0314.1
https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf
https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf
https://dtcenter.org/HurrWRF/users/docs/index.php
https://dtcenter.org/HurrWRF/users/docs/index.php
https://doi.org/10.1175/1520-0493(1994)122<2285:PRIAF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<2285:PRIAF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/WAF-D-18-0173.1


Davison, A. C., and D. V. Hinkley, 1997: Bootstrap Methods

and Their Application. Cambridge Series in Statistical and

Probabilistic Mathematics, Cambridge University Press,

592 pp.

Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and

K. Searight, 2013: Probabilistic weather prediction with an

analog ensemble. Mon. Wea. Rev., 141, 3498–3516, https://

doi.org/10.1175/MWR-D-12-00281.1.

DeMaria, M., 2009: A simplified dynamical system for tropical

cyclone intensity prediction. Mon. Wea. Rev., 137, 68–82,

https://doi.org/10.1175/2008MWR2513.1.

——, M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005:

Further improvements in the Statistical Hurricane Intensity

Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543,

https://doi.org/10.1175/WAF862.1.

——, C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is

tropical cyclone intensity guidance improving? Bull. Amer.

Meteor. Soc., 95, 387–398, https://doi.org/10.1175/BAMS-D-

12-00240.1.

Diebold, F. X., and R. S. Mariano, 1995: Comparing predictive

accuracy. J. Bus. Econ. Stat., 13, 253–263.

Finocchio, P. M., and S. J. Majumdar, 2017: The predictability of

idealized tropical cyclones in environments with time-varying

vertical wind shear. J. Adv. Model. Earth Syst., 9, 2836–2862,

https://doi.org/10.1002/2017MS001168.

Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer,

2013: The Hurricane Forecast Improvement Project. Bull.

Amer. Meteor. Soc., 94, 329–343, https://doi.org/10.1175/

BAMS-D-12-00071.1.

Ghosh, T., andT. N.Krishnamurti, 2018: Improvements in hurricane

intensity forecasts from a multimodel superensemble utilizing a

generalized neural network technique. Wea. Forecasting, 33,

873–885, https://doi.org/10.1175/WAF-D-17-0006.1.

Goerss, J. S., and C. R. Sampson, 2014: Prediction of consensus

tropical cyclone intensity forecast error.Wea. Forecasting, 29,

750–762, https://doi.org/10.1175/WAF-D-13-00058.1.

Hakim, G. J., 2013: The variability and predictability of axisym-

metric hurricanes in statistical equilibrium. J. Atmos. Sci., 70,

993–1005, https://doi.org/10.1175/JAS-D-12-0188.1.

Hartmann, H. C., T. C. Pagano, S. Sorooshiam, and R. Bales, 2002:

Confidence builders: Evaluating seasonal climate forecasts from

user perspectives. Bull. Amer. Meteor. Soc., 83, 683–698, https://

doi.org/10.1175/1520-0477(2002)083,0683:CBESCF.2.3.CO;2.

Judt, F., 2018: Insights into atmospheric predictability through

global convection-permitting model simulations. J. Atmos.

Sci., 75, 1477–1497, https://doi.org/10.1175/JAS-D-17-0343.1.

——, and S. S. Chen, 2016: Predictability and dynamics of tropical

cyclone rapid intensification deduced from high-resolution

stochastic ensembles.Mon. Wea. Rev., 144, 4395–4420, https://
doi.org/10.1175/MWR-D-15-0413.1.

Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of

rapidly intensifying tropical cyclones in the North Atlantic

basin. Wea. Forecasting, 18, 1093–1108, https://doi.org/

10.1175/1520-0434(2003)018,1093:LCORIT.2.0.CO;2.

——, and Coauthors, 2015: Evaluating environmental impacts on

tropical cyclone rapid intensification predictability utilizing

statistical models. Wea. Forecasting, 30, 1374–1396, https://

doi.org/10.1175/WAF-D-15-0032.1.

Krishnamurti, T. N., C. M. Kishtawal, T. LaRow, D. Bachiochi,

Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999:

Improved skills for weather and seasonal climate forecasts

from multimodel superensemble. Science, 285, 1548–1550,

https://doi.org/10.1126/science.285.5433.1548.

Liu, B., andCoauthors, 2018: Verification of 2018HWRFandHMON

performance.HFIPAnnualReviewMeeting,Miami, FL,NOAA,

http://www.hfip.org/events/annual_meeting_nov_2018/.

Mason, S. J., and N. E. Graham, 1999: Conditional probabilities,

relative operating characteristics, and relative operating

levels.Wea. Forecasting, 14, 713–725, https://doi.org/10.1175/

1520-0434(1999)014,0713:CPROCA.2.0.CO;2.

Mehra, A., V. Tallapragada, Z. Zhang, B. Liu, L. Zhu,

W. Wang, and H.-S. Kim, 2018: Advancing the state of the

art in operational tropical cyclone forecasting at NCEP.

Trop. Cyclone Res. Rev., 7, 51–56, https://doi.org/10.6057/

2018TCRR01.06.

Onderlinde, M., andM. DeMaria, 2018: Deterministic to Probabilistic

Statistical rapid intensification index (DTOPS): A new

method for forecasting RI probability. 33rd Conf. on

Hurricanes and Tropical Meteorology, Ponte Vedra, FL,

Amer. Meteor. Soc., 16C.3, https://ams.confex.com/ams/

33HURRICANE/webprogram/Paper339346.html.

Ryglicki, D., J. D. Doyle, D. Hodyss, J. H. Cossuth, Y. Jin, K. C.

Viner, and J.M. Schmidt, 2019: The unexpected intensification

of tropical cyclones in moderate vertical wind shear. Part III:

Outflow–environment interaction.Mon.Wea. Rev., 147, 2919–

2940, https://doi.org/10.1175/MWR-D-18-0370.1.

Sampson, C. R., J. L. Franklin, J. A. Knaff, and M. DeMaria, 2008:

Experiments with a simple tropical cyclone intensity consen-

sus. Wea. Forecasting, 23, 304–312, https://doi.org/10.1175/

2007WAF2007028.1.

Simon, A., A. B. Penny, M. DeMaria, J. L. Franklin, R. J. Pasch,

E. N. Rappaport, and D. A. Zelinsky, 2018: A description of

the real-timeHFIP Corrected Consensus Approach (HCCA) for

tropical cyclone track and intensity guidance. Wea. Forecasting,

33, 37–57, https://doi.org/10.1175/WAF-D-17-0068.1.

Sperati, S., S. Alessandrini, P. Pinson, and G. Kariniotakis, 2015:

The ‘‘Weather Intelligence for Renewable Energies’’ bench-

marking exercise on short-term forecasting of wind and solar

power generation. Energies, 8, 9594–9619, https://doi.org/

10.3390/en8099594.

Stewart, S. R., and R. Berg, 2019: National Hurricane Center Tropical

Cyclone Report: Hurricane Florence (31 August–17 September

2018). NOAA/NHC Tech. Rep. AL062018, NOAA/National

Hurricane Center, 98 pp., https://www.nhc.noaa.gov/data/tcr/

AL062018_Florence.pdf.

Wang, W., J. A. Sippel, S. Abarca, L. Zhu, B. Liu, Z. Zhang,

A. Mehra, and V. Tallapragada, 2018: Improving NCEP

HWRF simulations of surface wind and inflow angle in the

eyewall area. Wea. Forecasting, 33, 887–898, https://doi.org/

10.1175/WAF-D-17-0115.1.

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences.

2nd ed. International Geophysics Series, Vol. 100, Academic

Press, 648 pp.

Williford, C. E., T. N. Krishnamurti, R. C. Torres, S. Cocke,

Z. Christidis, and T. S. Vijaya Kumar, 2003: Real-time mul-

timodel superensemble forecasts of Atlantic tropical systems

of 1999. Mon. Wea. Rev., 131, 1878–1894, https://doi.org/

10.1175//2571.1.

Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the

predictability of tropical cyclones. J. Atmos. Sci., 70, 975–983,

https://doi.org/10.1175/JAS-D-12-0133.1.

——, N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007:

Mesoscale predictability of moist baroclinic waves: Convection-

permitting experiments and multistage error growth dynamics.

J. Atmos. Sci., 64, 3579–3594, https://doi.org/10.1175/JAS4028.1.

856 WEATHER AND FORECAST ING VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:03 PM UTC

https://doi.org/10.1175/MWR-D-12-00281.1
https://doi.org/10.1175/MWR-D-12-00281.1
https://doi.org/10.1175/2008MWR2513.1
https://doi.org/10.1175/WAF862.1
https://doi.org/10.1175/BAMS-D-12-00240.1
https://doi.org/10.1175/BAMS-D-12-00240.1
https://doi.org/10.1002/2017MS001168
https://doi.org/10.1175/BAMS-D-12-00071.1
https://doi.org/10.1175/BAMS-D-12-00071.1
https://doi.org/10.1175/WAF-D-17-0006.1
https://doi.org/10.1175/WAF-D-13-00058.1
https://doi.org/10.1175/JAS-D-12-0188.1
https://doi.org/10.1175/1520-0477(2002)083<0683:CBESCF>2.3.CO;2
https://doi.org/10.1175/1520-0477(2002)083<0683:CBESCF>2.3.CO;2
https://doi.org/10.1175/JAS-D-17-0343.1
https://doi.org/10.1175/MWR-D-15-0413.1
https://doi.org/10.1175/MWR-D-15-0413.1
https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
https://doi.org/10.1175/WAF-D-15-0032.1
https://doi.org/10.1175/WAF-D-15-0032.1
https://doi.org/10.1126/science.285.5433.1548
http://www.hfip.org/events/annual_meeting_nov_2018/
https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2
https://doi.org/10.6057/2018TCRR01.06
https://doi.org/10.6057/2018TCRR01.06
https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339346.html
https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339346.html
https://doi.org/10.1175/MWR-D-18-0370.1
https://doi.org/10.1175/2007WAF2007028.1
https://doi.org/10.1175/2007WAF2007028.1
https://doi.org/10.1175/WAF-D-17-0068.1
https://doi.org/10.3390/en8099594
https://doi.org/10.3390/en8099594
https://www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf
https://www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf
https://doi.org/10.1175/WAF-D-17-0115.1
https://doi.org/10.1175/WAF-D-17-0115.1
https://doi.org/10.1175//2571.1
https://doi.org/10.1175//2571.1
https://doi.org/10.1175/JAS-D-12-0133.1
https://doi.org/10.1175/JAS4028.1

